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and 

P2(¢ + ¢r) oc exp [-(e2/2E2)]. 

Similar expressions can be derived for the case shown 
in Fig. l(b).  

Hence, if all phase probabilities other than those 
at ~ and ~ + ~r are neglected, 

m = ( P, - P2)/ ( PI + P2). 

The quantities P1 and P2 can be computed provided 
there exists a knowledge of the scale factor k. This 
can be estimated by assuming 

k ( f ) =  2'/2(A), 

where ( ) signifies mean quantities. Now (f)  = ju2 if 
there are J atoms of unit weight in the cell. Hence, 

k=(A)(2 /J)  '/:. 

It follows that if, for a particular reflection, f =  0, 
then P~ = P: and m =0.  Similarly, if IAI = 0, then 
P~ = P2 and m = 0. Indeed, the expression for m is en- 
tirely symmetrical between klf[ and ]A]. The figure of 
merit is, therefore, small whenever k[fl or IAI are 
small compared to (A). 
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Abstract 
If intensities of reflexion have one or other of the 
ideal distributions [Wilson (1949). Acta Cryst. 2, 318- 
320], the sum of n such intensities has a gamma (y) 
distribution with parameter n (acentric) or n/2 (cen- 
tric), and the ratio of two such sums has a beta (/3) 
distribution. These distributions are applied to (i) 
intensities normalized to the ideal average 2 ;  (ii) 
intensities normalized to the local average (I); (iii) 
ratios used for scaling. Bias in scaling is discussed, 
and certain results are obtained for non-ideal distribu- 
tions. Expressions are obtained for the variance of 
the traditional reliability index R for both ideal distri- 
butions; these have applications in certain methods 
of structure determination [Rabinovich & Shakked 
(1984). Acta Cryst. A40, 195-200]. 

0108-7673/86/050334-06501.50 

1.1. Notation 

I. Introduction 

In several crystallographic contexts it is necessary t o  
consider sums like 

and ratios like 

J.-- ~ Gi, (1) 
i=l 

m 
K , . =  Y~ Hi, (2) 

i=l 

S.,m=J./Km, (3) 

where Gi and Hi are the intensities of sets of 
reflexions. Similar expressions where Gi and H, are 
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sets of moduli of structure factors also occur, but 
these are ordinarily less tractable mathematically. An 
example of the use of a sum is the use of the average 
intensity, 

(I)=J, , /n,  (4) 

in order to place measured intensities on an approxi- 
mate absolute scale (Wilson, 1942) before beginning 
a structure analysis. The ratio S,.m is used in correlat- 
ing intensities measured under different conditions, 
such as the same reflexions from different crystals, or 
the reflexions on different layer lines from the same 
or different crystals. Such ratios also occur in certain 
systematic trial-and-error methods of structure deter- 
mination (see, for example, Rabinovich & Schmidt, 
1966; Hirshfeld, 1968; Rabinovich & Shakked, 1984). 
There are two main cases: 

(i) Gi and Hi refer to the same re flexion; for 
example, they might be the observed and calculated 
quantities for the hkl reflexion of a nearly correct 
structure, or the observed quantities for the hkl 
reflexion measured under different conditions or for 
different crystals of the same substance; or 

(ii) Gi and Hi are unrelated, for example, the 
observed and calculated values for the hkl reflexion 
for a completely wrong trial structure, or values for 
entirely different reflexions, as in reducing photo- 
graphic measurements on different layer lines to the 
same scale. 

Aside from the scale factor, in case (i) Gi and Hi 
will differ chiefly through relatively small statistical 
fluctuations and uncorrected systematic errors, 
whereas in case (ii) the differences will be relatively 
large because of inherent differences in the intensities. 
Here we are concerned only with the unrelated case 
(ii). 

As has been indicated, the results have applications 
to the determination of absolute and relative scales 
(§§ 2.2.1, 2.3, 3.2, 3.3) and to a particular method of 
structure determination (§§ 4.1.1, 4.1.2). There is little 
in the crystallographic literature concerning the prob- 
ability distribution of sums like (1) or ratios like (3); 
certain results are reviewed by Srinivasan & 
Parthasarathy (1976, ch. 5), but with a bias toward 
partially related structures that makes it difficult to 
apply them to the immediate problem. 

1.2. The acentric and centric distributions 

There is an extensive theory of the probability 
distribution for individual intensities [for references 
see, for example, Shmueli & Wilson (1981) and Weiss, 
Shmueli, Kiefer & Wilson (1985)]. Although these 
probability distributions can be very complex, the 
central-limit approximations (Wilson, 1949) apply 
with sufficient accuracy [particularly if the intensities 
are normalized with respect to the smoothed local 
average intensity (§§ 2.3 and 3.3 below) rather than 

Table 1. Some properties of  Y and ~ distributions 

If  xt, x 2 , . . . ,  xn are independent T-distributed variables with 
parameters Pl, P2, • • •, P,,  their sum is a y-distributed variable with 
p = pl + p2 + . . .+p,, .  
If  x and y are independent y-distributed variables with parameters 
p and q, then the ratio u = x / y  has the distribution/32(u; p, q). 
With the same notation, the ratio v = x / ( x  + y) has the distribution 
/31(o; P, q). 
Differences and products of  y-distributed variables do not lead to 
simple results. 
For proofs, details and references see Kendall & Stuart (1977). 

Name of  the distribution 
and functional form 

y distribution with parameter p 
7p(x) = [F(x)]-lx p-I exp (-x) 

0-< x-< oo, p>O 
distribution of first kind 
with parameters p and q 

fit(x; p, q) 
= [F(p + q)/F(p)F(q)]x p-~ 

x (1 - x) q-1 
O<--x<--l,p, q>0 
distribution of second kind 
with parameters p and q 

/~2(x; p, q) 
= [F(p+ q)/F(p)F(q)]x p-I 

x (1 + x) -p-q 
0-<x-<oo; p, q>O 

Mean Variance 

p P 

p/ (p+q)  pq/ (p+q)2(p+q+l)  

p / ( q - 1 )  p ( p + q - 1 ) / ( q - 1 ) ( q - 2 )  

with respect to the sum of the squares of the moduli 
of the atomic scattering factors (French & Wilson, 
1978; Wilson, 1981)] in a sufficient number of cases 
for distributions of J and S based on them to be of 
interest. The distributions are (acentric) 

p(I )  dI  = exp (-I/.,Y,) d ( I / 2 )  (5) 

for non-centrosymmetric crystals, and (centric) 

P(I )  dI=(2,~/TrI)  ~/2 exp ( - I / 2 , ~ )  d ( I / 2 2 )  (6) 

for centrosymmetric. Probability distributions for J 
and S based on (5) and (6) are readily obtained by 
the use of characteristic functions (Cram6r, 1945, ch. 
10), but the labour is unnecessary, as the required 
functions have been extensively studied in statistics. 
They can be described either by gamma (y) distribu- 
tions and beta (fl) distributions of the second kind, 
or by X 2 distributions and Fisher distributions 
(Cram6r, 1945, ch. 18). Either representation involves 
some inconvenient factors of 2 or ½; the first will be 
used here because (i) the nuisance factors appear to 
be fewer, and (ii) one application involves fl distri- 
butions of the first kind also, and greater homo- 
geneity of treatment is attained. The main properties 
of the 7 and the fl distributions are collected in 
Table 1. 

1.3. Polynomial expansions 

The 3' and fl distributions could be regarded, if 
necessary, as the first terms in expansions of 
orthogonal polynomials. The polynomials are 
Laguerre for y distributions (Szeg6, 1939, oh. V; 
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Abramowitz & Stegun, 1964, formula 22.2.12) and 
Jacobi for /3 (Szegr, 1939, ch. IV; Abramowitz & 
Stegun, 1964, formula 22.2.2). The use of the simplest 
type of Laguerre polynomial has been noted already 
by Shmueli & Wilson (1981). 

2. Applications to the acentric distribution 

2.1. Average of n intensities 

Obviously, from (5) and the definition of the 
distribution in Table 1, the acentric distribution is 
given by 

p( I) d I =  3,,(I/2) d( I / 2 ). (7) 

The sum of n intensities, J , ,  thus has the distribution 

p(J,) dJ, = T,,(J,,/.Y) d(J , /Z ) .  (8) 

The average of n intensities has been represented by 
(I) in (4), but to simplify the following equations it 
will henceforward be written as Y =  J,/n. From (8), 
Y has the distribution 

p(Y)  d Y = y , ( n Y / Z ) d ( n Y / Z ) .  (9) 

The expected value of Y is thus 

tz = n,T,/n = Z (10) 

with variance 

0 -2 = n Z E / n  2 ---- Z2/n (11) 

- as would be expected. 

2.2 Ratio of two intensity averages 

2.2.1. The ratio of two such means is more interest- 
ing. From Table 1, the distribution of 

u = n Y / m Z  (12) 

is 

p(u)du=f l2(nY/mZ;  n ,m)d(nY /mZ) ,  (13) 

where n is the number of intensities included in the 
numerator and m is the number in the denominator. 
The expected value of Y / Z  is then 

I~ =[p / (q -1 ) ] (m /n )=  m / ( m - 1 ) =  l + m  - ~ + . . .  
(14) 

with variance 

0-2 = [p (p  + q _  1 ) / ( q -  1)2(q-2)](m2/n 2) 

= ( n + m - 1 ) m 2 / ( m - 1 ) 2 ( m - 2 ) n .  (15) 

One sees that Y / Z  is a biased estimate of the scaling 
factor between the two sets of intensities, and that 
the bias, of the order of m -1, depends only on the 
number of intensities averaged in the denominator. 
This may seem odd at first sight, but it becomes 
plausible when one remembers that the mean of a 

quantity is an unbiased estimator of itself, but the 
reciprocal of a mean is not an unbiased estimator of 
the mean of a reciprocal. The mean exists only if 
m > 1 and the variance only for m > 2. 

2.2.2. This bias is readily removed by multiplying 
Y / Z  by (m-1) /m.  Many methods of estimating 
scaling factors - perhaps most - also introduce bias 
(Wilson, 1975; Lomer & Wilson, 1975; Wilson; 1976) 
that is not so easily removed. 

2.2.3. For the same numbers of reflexions, the bias 
in /z and the variance for the centric distribution 
(§ 3.1 below) are considerably larger than for the 
acentric distribution. For both distributions the vari- 
ance of the scaling factor approaches zero when n 
and m become large. 

2.3. Intensities normalized to local average 

The distribution of the ratio v = x/(x  +y) is chiefly 
of interest when x relates to a single reflexion and y 
relates to the remaining ( n - l )  of a group of n 
intensities. This corresponds to normalizing 
intensities to the local average Y instead of to ,~; v 
is then the normalized intensity. Its distribution is 
(Table 1) 

p(v )dv=f l~ ( I /nY;1 ,  n - 1 ) d ( I / n Y ) ,  (16) 

with an expected value of I~ Y of 

i~=[p/(p+q)]n= l; (17) 

there is no bias, as is obvious a priori. The variance 
of I / Y  is 

o2=[pq/(p+ q+ l)(p+ q)2]n2=(n-1)/(n+ l), 

(18) 

which is less than the variance of the intensities nor- 
malized to an 'infinite' population by a fraction of 
the order of 2/n. Unlike the variance of the scaling 
factor, the variance of the normalized intensity 
approaches unity as n becomes large. Also, on taking 
the limit for n large, the fl distribution (16) tends to 
T~(I/Y) d ( I /Y ) ,  the centric distribution with the 
mean equal to the local average instead of to ,~. 

3. Applications to the centric distribution 

3.1. Average of n intensities 

From (6) and Table 1, the centric distribution is 

p( I )d I=3q/2( I /2X)d( I /22) .  (19) 

The centric equivalents of the acentric equations (8)- 
(10) are thus obtained by replacing n by n/2 and 
by 2X, giving 

p(J,,) dJ, = T,/2(J,/2~, ) d(J,/2Z), (20) 

and the average of n intensities, Y=J , /n ,  has the 
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distribution 

p ( Y ) d Y = y n / 2 ( n Y / 2 2 ) d ( n Y / 2 2 ) .  (21) 

The expected value of Y is then 

/z = ( n / 2 ) ( 2 2 / n )  = Z (22) 

with variance 

cr2=(n/2)(2Z/n)2=2Z2/n. (23) 

3.2. Ratio of two intensity averages 

In the centric case, in the expression for the distri- 
bution of the ratio of two means Y and Z, p becomes 
n/2 and q becomes m/2, so that 

p(u)du=f l2(nY/mZ;  n /2 ,m/2)d(nY/mZ) ,  (24) 

with the expected value of Y / Z  equal to 

tz = [ p / ( q -  1)](m/n)= m / ( m - 2 ) =  1+ 2m -1 +. . .  
(25) 

and with its variance equal to 

tr2 = [2n(n + m-E)/ (m-E)E(m-4)](mE/n 2) 

=2(n+m-2)mE/ (m-2)2 (m-4)n .  (26) 

The variance is thus large for m small, in fact 'infinite' 
if the number of terms averaged in the denominator 
is less than five, but goes to zero for large m and n. 

3.3. Intensities normalized to the local average 

The distribution of intensities normalized to the 
local average is given by 

p(v) dv=f l l [ I /nY;½, (n -1 ) /2]d ( I /nY) ,  (27) 

with an expected value of I / Y  of 

i~ = [p/ (p + q)]n = l (28) 

with variance 

tr2=[pq/(p+ q+ 1)(p+ q)2]n2 = 2 ( n -  1)/(n + 2), 
(29) 

less than that for an 'infinite' population by a fraction 
of about 3/n. The limit of the distribution (27) for n 
large is the centric distribution ~1/2(I/2 Y) d( I /2  Y) 
with mean Y instead of Z;  the passage to the limit 
is rather more difficult than for the acentric distribu- 
tion (§ 2.3). 

3.4. Large intensities 

For intensities approaching the maximum possible 
in centrosymmetric space groups the modulus F 
of the structure factor is distributed as a power of 
( 1 -  U), where 

U= F/ ~o, (30) 
N 

~o= ~ f~, (31) 
i=1 

and f~ is the atomic scattering factor of the ith of the 
N atoms in the unit cell (Wilson, 1983; We'iss & 
Kiefer, 1983; Weiss, Shmueli, Kiefer & Wilson, 1985). 
The result of Weiss & Kiefer for P1 is 

p ( U ) d U =  2~')N/4r(N/4) II (2f,/~) 1/2 
i--1 

x ( l - o r )  N/4-1 dU. (32) 

Aside from the constant factor, this is a fl distribution 
of the first kind, with p = 1, q = N/4. [It is not to be 
expected that the constant factors will agree, as the 
distribution (32) represents p(U) only for U 
approaching unity.] 

4. Other topics 

4.1. Variance of R for wrong structures 

4.1.1. The method of structure determination 
developed by Rabinovich & Shakked (1984) involves 
evaluation of the traditional R, 

R = X~ Fi, (33) 
i=1 i 1 

for a series of 'random' trial structures; Fi is the 
observed structure factor and Xi is the difference 
between the observed and calculated values of the 
ith structure factor. The expected values of R for 
wrong structures are (Wilson, 1950) 2-21/2=0.586 
for F 's  having the acentric distribution and 81/2- 2 = 
0.828 for F 's  having the centric distribution. The 
structure factors calculated for the trial structures can 
be regarded as a random sample from the possible 
structure factors, and the values of R obtained in 
practice scatter above and below the theoretical 
values just quoted, particularly when the number of 
reflexions that can be used is small. During a con- 
versation in December 1983, Professor Rabinovich 
asked me how large such statistical fluctuations are 
likely to be, a question that led to the train of thought 
of the present paper. It is fairly easy to determine the 
statistical standard deviation of R if one adopts the 
1950 standpoint, although in 1984 certain difficult 
refinements might be suggested. 

4.1.2. The variance of R should be, from (33), 

o r 2 ( R ) - "  o ' 2 ( X i )  /:7/ ( 3 4 )  
i=1 i 1 

= tr2(X)/ n(F) 2, (35) 

since all the F's  and X's  have the same distribution. 
Thus 

tr2(X) = ( X 2) - (X) 2 (36) 

=((F2-EFoFc+ F2)) - (X)  2 (37) 

= 2(F2) - 2(F)2-  (X) 2. (38) 
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From (33) it follows that 

(F)=(F)(R), (39) 

so that 

and 

tr2(X)= 2.,Y, -(F)2(2+(R) 2) (40) 

tr2(R) = n-'[2.Y,/(F)2-2-(R)2]. (41) 

For acentric distributions 

(F) = ½(.Ycr) '/2 , ( R ) = 2 - 2  '/2 , (42) 

so that 

o-2(R)=n-'[(8/Tr)+(32)~/2-8]=O.203/n (43) 

and for centric distributions 

(F)=(22,/rr) ~/2 , (R) = 81/2-2, (44) 

so that 

o.2(R)=n-'[~r+(128)u2-14]=O.455/n. (45) 

If n is not large the corresponding standard deviations 
can be quite big; for example, if n = 25 the value of 
the acentric R is 0.59 with standard deviation 0.09 
and that of the centric R is 0-83 with standard devi- 
ation 0.13. 

4.2. Some results for non-ideal distributions 

4.2.1. The median of a ratio. From the symmetry 
relation for the incomplete/3 function (Abramowitz 
& Stegun, 1964, formula 6.6.3) it follows immediately 
that the median of the /31 distribution is at x--½, 
whatever the values of p and q. The relation between 
the two /3 distributions (Table 1) then implies that 
the median of the /32 distribution is at x = 1. This 
distribution results from the ratio of two variables 
with y distributions, and one is therefore led to ask 
if a similar result holds for ratios of non-negative 
variables with other distributions. The following argu- 
ment appears to show that it does hold if the 
numerator and denominator have the same distribu- 
tion, but not necessarily otherwise. The distribution 
function of a ratio u = x / y  is given by (Kendall & 
Stuart, 1977, p. 282) 

co 

p(u)du= I qa(uy)q2(y)ydydu, (46) 
0 

where the q's are the probability density functions of 
x and y. If the q's are different there is no obvious 
way forward, but progress can be made if q(.) is the 
same for both x and y. The median is the value of m 
that satisfies the equation 

½= ~ ~ q(uy)q(y)y dy du. (47) 
0 0 

Substitution of t = uy and integration first with respect 

to u (t) gives 
co  ml)  

½= j ~ q(t) dtq(y) dy (48) 
0 0 

=~ Q(my)q(y) dy, (49) 
0 

where Q(.) is the cumulative distribution function 
corresponding to q(.). In general there is no simple 
integral, but it is obvious that m = 1 is a solution, 
whatever the form of q(.). With m = 1, (48) becomes 

oo 

½= I Q(Y)d[Q(Y)]=2-'[Q(Y)]2]~ =1, (50) 
0 

an identity. The median is therefore at u = 1, whatever 
the form of q(.). We thus find that when n = m, Y / Z  
is an unbiased estimate of the median of the distribu- 
tion of the scale factor, even though it is not an 
unbiased estimate of the mean. 

4.2.2. Bias of the scaling ratio. With Y and Z 
defined by [(1) and (2)] 

Y=J , /n ,  Z=Km/m,  (51) 

the scaling ratio u is 

u= Y / Z  (52) 

in any particular case, and has the expected value 

(u) = ( Y~ Z) = (Y)(Z- ' ) .  (53) 

The expected value of Y is the mean population 
intensity, say M, and is not to be confused with Y, 
which is the mean of a particular sample of n 
intensities. If the probability distribution of Z is q(Z), 
the required value of Z -~ is 

(Z -1) = ~ Z -~ q(Z) dZ. (54) 

This is not equal to M-Z; fluctuations to small values 
increase Z -~ by more than fluctuations to high values 
decrease it, so that (Z -~) is always greater than M -~, 
and is in fact infinite for small values of m (1 and 2 
for the ideal acentric and centric distributions, as was 
seen in §§ 2.2.1 and 3.2, but 4 or more for many 
non-ideal distributions). 

The effect just described depends on the spread of 
the values of Z about its expected value M, a spread 
which is measured by the variance of Z. The ratio of 
the discrepancies for the ideal distributions is the 
same as the ratios of their variances, suggesting that 
in general the bias will be of the order of 

1 + ~2(I)/re(I) 2, (55) 

whatever the intensity distribution. This conjecture is 
made plausible by the following argument. The vari- 
ance of Z is, of course, equal to the variance of a 
single intensity I divided by m, so that for larger m 
the distribution becomes more and more concentrated 



A. J. C. WILSON 339 

about Z = M. One is therefore led to expand Z -1 in 
powers of  ( Z -  M ) / M ,  giving 

Z -I = M- I [1  - ( Z -  M ) / M  + ( Z -  M ) 2 / M 2 - . . .  

+ ( - ) k ( z -  M ) k / M  k +. . . ]  (56) 

= M - 1 -  0+  o-2(Z)/M 3 + . . .  

+ (--)ktzk(Z)Mk+~ + . . . ,  (57) 

( Y / Z )  = 1 + ~r2( I ) /  m ( I ) 2 -  . . . 

+(- - )k tXk(Z) / ( I )k  + . . .  ; (58) 

the first two terms agree with the conjecture (55). 
The moments/Zk for k odd are small. Regarded as 

functions of  k, those for k even increase with k, and 
the series may not converge. However, regarded as 
functions of m, they are of  the order of m -k-~, and 
the terms of  the series (58) decrease with increasing 
m. The series thus appears to be asymptotic; for fixed 
m the terms at first decrease with increasing k, but 
ultimately increase. Such series give a good approxi- 
mation if only terms in the decreasing region are used. 

Values of  tr2(I) as a function of space group and 
atomic composition have been given by Wilson (1950, 
1978), Foster & Hargreaves (1963), Shmueli & Kaldor 
(1981) and Shmueli & Wilson (1981). Even if there 
is no atomic heterogeneity the effect of symmetry can 
be appreciable. Wilson (1978, § 1.5) considered the 
hypothetical case of  an element crystallizing in three 
allotropic forms, each with 24 atoms in the unit cell, 
and having respectively space groups P1, P2/m ,  and 
P 6 / m m m .  The coefficients of m -I in (55) would be 
0.958, 1.875 and 3.125. The first two are close to the 
ideal values 1 and 2, but the third is markedly higher. 

4.3. The use o f  normal approximations 

Since Jn and Km [(1) and (2)] are sums of  identi- 
cally distributed variables conforming to the condi- 
tions of the central-limit theorem, it is tempting to 
approximate their distributions by normal distribu- 
tions with the correct mean and variance. This would 

be reasonably satisfactory for the distributions of Jn 
and Km themselves for quite small values of  n and 
m, but unsatisfactory for the distribution of  their ratio 
for any values of  n and m, even large. The ratio of 
two variables with normal distributions is notorious 
for its rather indeterminate mean and 'infinite' vari- 
ance, resulting from the 'tail '  of  the denominator  
distribution extending through zero to negative 
values. The leading term of  the ratio distribution is 
given by Kendall  & Stuart (1977, p. 288). 
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